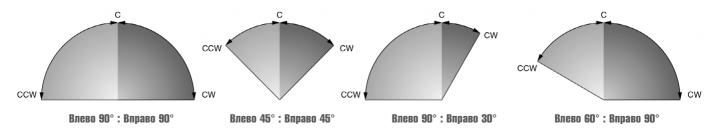

Остановка в трех положениях с возможностью регулировки в каждом положении

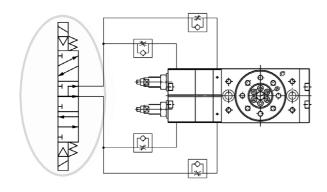
Возможность управления приводом при помощи одного 3-позиционного электромагнитного пневмораспределителя



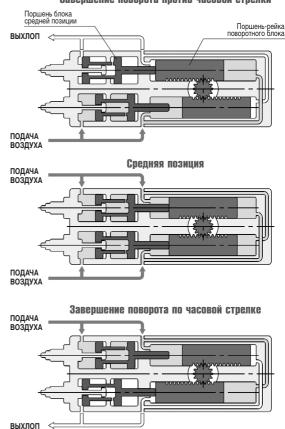
Пример применения поворотного стола MSZ для сортировки деталей и укладки их на разные транспортерные ленты, расположенные справа и слева от подающего конвейера

Примеры установки конечных положений

где ССW – против часовой стрелки, С – средняя позиция (исходное положение), СW – по часовой стрелке


Принцип действия

Для управления устройством используется 5/3 электромагнитный пневмораспределитель (центр под давлением).


Поворотный стол MSZ конструктивно состоит из двух частей поворотного блока и блока средней позиции. В составе поворотного блока имеются два поршня-рейки, передающие усилие на выходной вал. Блок средней позиции состоит из двух одинаково направленных пневмоцилиндров одностороннего действия.

При подаче сжатого воздуха в рабочую полость одного из поршней поворотного блока, поршень-рейка совершает прямолинейное движение, которое посредством реечной передачи преобразуется во вращательное движение выходного вала.

При переключении управляющего распределителя в центральную позицию сжатый воздух одновременно подается в рабочие камеры всех четырех поршней. Давление сжатого воздуха на оба поршня-рейки поворотного блока одинаково, поэтому поршни-рейки могут перемещаться только под воздействием штоков поршней средней позиции. Таким образом происходит возврат поворотного стола в среднюю позицию.

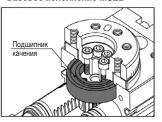
Завершение поворота против часовой стрелки

Возможна установка нагрузки непосредственно на поворотный стол

Размеры корпуса поворотного блока соответствуют размерам корпуса поворотного стола MSQ

Существуют базовое и прецизионное исполнения

MSZ

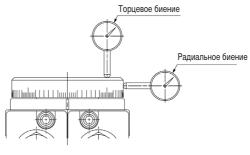

Типоразмер		10	20	30	50			
Рабочая среда		Сжатый воздух (с содержанием						
		или без содержания масла)						
Макс. рабочее давление	е (МПа)	1						
Мин. рабочее давление	(МПа)	0.2						
Температура рабочей и	окружающей среды (°C)	0 ~ 60 (H	Не допускат	ь замерзані	ия)			
Демпфирование		Нет	Нет					
Допустимая кинетическ	ая энергия нагрузки (Дж)	0.007	0.025	0.048	0.081			
Время поворота на 90° в	установившемся режиме (с)	0.2 ~ 1						
Диапазон регулировани	я угла поворота	0 ~ 190°						
Диапазон установки сре	едней позиции	±10°						
Присоединительная рез	ьба	M5						
Масса (кг, с датчиками	Базовое исполнение	0.73	1.35	1.73	2.66			
положения)	Прецизионное исполнение	0.76	1.45	1.85	2.82			

Расход сжатого воздуха, норм.л/цикл

Типоразмер	Направление	Угол	Внутренний	Рабоче	е давлени	е (МПа)								
	движения	поворота	орота объем (см³)		0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	10 К центру 90° От центра		6.69	0.020	0.027	0.033	0.040	0.047	0.054	0.060	0.067	0.074		
			3.11	0.009	0.012	0.016	0.019	0.022	0.025	0.028	0.031	0.034		
20	К центру		13.2	0.040	0.053	0.066	0.079	0.093	0.106	0.119	0.132	0.145		
	От центра		6.40	0.019	0.026	0.032	0.038	0.045	0.051	0.058	0.064	0.070		
30	К центру		20.0	0.060	0.080	0.100	0.120	0.140	0.160	0.180	0.200	0.220		
	От центра		9.52	0.029	0.038	0.048	0.057	0.067	0.076	0.086	0.095	0.105		
50	К центру		32.6	0.098	0.130	0.163	0.195	0.228	0.261	0.293	0.326	0.358		
	От центра		16.2	0.049	0.065	0.081	0.097	0.113	0.130	0.146	0.162	0.178		

Отличие базового и прецизионного исполнений

Базовое исполнение MSZB



Прецизионн	ное исполнение MSZA
Прецизионный подшипник	
	min o

Типоразмер	Момент вращения (Нм)
10	1
20	2
30	3
50	5

Номер для заказа поворотного стола (без датчиков положения)

Типоразмер	Прецизионное исполнение	Базовое исполнение									
10	MSZA10A	MSZB10A									
20	MSZA20A	MSZB20A									
30	MSZA30A	MSZB30A									
50	MSZA50A	MSZB50A									

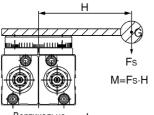
Допустимые отклонения, мм

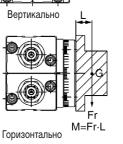
		MSZA	MSZB		
	Допуск торцевого биения	0.03	0.1		
1	Допуск радиального биения	0.03	0.1		

www.kbkpnevmo.ru ООО ПКФ КБК ПЕРСПЕКТИВА (495) 775-71-59 info@kbkpnevmo.ru

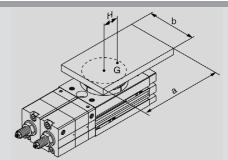
Трехпозиционный поворотный стол с двухпоршневым приводом

Критерии выбора типоразмера


Порядок расчета


Формулы

Пример расчета


1 Режим работы

Перечислите характеристики, учитывая положение нагрузки относительно монтажной плоскости

- Исполнение
- Рабочее давление (МПа)
- Размещение нагрузки
- Характер нагрузки Статическая нагрузка Тѕ (Нм) Реактивная нагрузка Tf (Нм) Инерционная нагрузка Та (Нм)
- Форма и размеры нагрузки
- Время поворота t (c)
- Масса нагрузки т (кг)
- Расстояние от оси вращения до центра тяжести нагрузки Н (м)
- Расстояние от монтажной плоскости до центра тяжести нагрузки L (м)

Предварительно выбран поворотный стол MSZB50A Рабочее давление 0.5 МПа Расположение - вертикальное Характер нагрузки – инерционная Та Форма нагрузки: тонкая прямоугольная пластина 0.1 x 0.06 м Время поворота 0.3 с Угол поворота 90° Масса нагрузки 0.4 кг Расстояние от оси вращения до центра тяжести Н 0.04 м

Определение необходимого момента вращения

Выберите привод, исходя из характера нагрузки

Эффективный момент вращения ≥ Тѕ Эффективный момент вращения ≥ (3~5)·Тf Эффективный момент вращения ≥ 10Та

Инерционная нагрузка (см. п.5) $10 \times Ta = 10 \times I \times \omega = 10 \times 0.00109 \times (2 \times (\pi/2)/0.3^2) = 0.380 \text{ Hm}$

> Полученное значение меньше эффективного момента вращения

Время поворота

Требуемое время не должно выходить за пределы допустимого диапазона Если длительность операции превышает рекомендуемую, возможно заедание либо остановка привода

(0,2~1) c/90°

0,3 c/90°

Допустимая нагрузка

Значения радиальной нагрузки, осевой нагрузки и изгибающего момента не должны превышать допустимых (см. табл. «Максимально допустимая нагрузка»)

Осевую нагрузку вычисляют по формуле: т х 9.8 Изгибающий момент вычисляют по формуле: т х 9.8 х Н

 $0.4 \times 9.8 = 3.92 H$ $0.4 \times 9.8 \times 0.04 = 0.157 \text{ Hm}$

Момент инерции

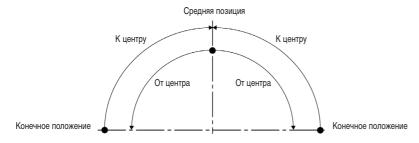
Определите момент инерции нагрузки I, кгм² (см. стр. 2-145)

 $I = m \times (a^2 + b^2)/12 + m \times H^2$

 $I = 0.4 \times (0.10^2 + 0.06^2)/12 + 0.4 \times 0.04^2 = 0.00109 \text{ KFM}^2$

Кинетическая энергия

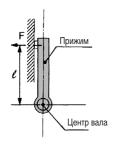
Кинетическая энергия нагрузки не должна превышать допустимой (см. «Зависимость кинетической энергии от времени поворота»)


Кинетическую энергию (Дж) вычисляют по формуле $\frac{1}{2}$ х I х ω^2 , где ω = 2 Θ /t конечная угловая скорость

 $\frac{1}{2} \times 0,00109 \times (2 \times (\pi/2)/0.3)^2 = 0.06 \ Дж$ Значения, полученные в п.п. 2-6, находятся в допустимых пределах, следовательно, поворотный стол выбран правильно.

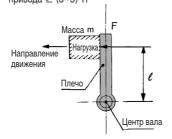
Эффективный вращающий момент*(Нм)

Тип	Направление	Рабочее	давление	(МПа)						
	движения	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
10	К центру	центру 0,38 0,60 0,83 1,06		1,28	1,51	1,73	1,96	2,18		
	От центра	0,29	0,50	0,70	0,90	1,10	1,30	1,51	1,71	1,91
20	К центру	ентру 0,72 1,14 1,55 1,97		1,97	2,39	2,81	3,22	3,64	4,06	
	От центра	0,62	1,01	1,40	1,78	2,17	2,56	2,95	3,34	3,73
30	К центру	1,09	1,72	2,36	3,00	3,63	4,27	4,90	5,54	6,18
	От центра	0,91	1,49	2,07	2,65	3,23	3,81	4,39	4,97	5,55
50	К центру	1,83	2,83	3,84	4,84	5,84	6,85	7,85	8,85	9,85
	От центра				4,75	5,74	6,74	7,73	8,72	9,72


^{*} Величина вращающего момента зависит от направления поворота (см. рисунок)

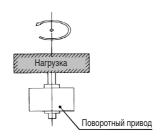
Определение момента вращения для нагрузок различного характера

Статическая нагрузка Тѕ


Пример – прижим. Учитывается только сила прижима F

F -сила прижима (H) $Ts = F \times I$ (Hм)

Реактивная нагрузка Tf


Момент сил сопротивления, например, трения или силы тяжести. Эффективный вращающий момент привода $\geq (3\sim5)$ -Tf

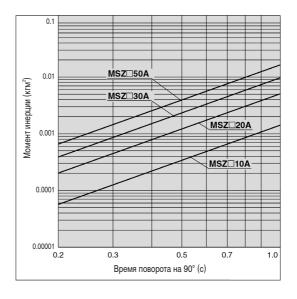
 $F = \mu \times mg,$ где μ — коэффициент трения, $g = 9.8 \text{ M/c}^2,$ $Tf = F \times I \text{ (HM)}$

Инерционная нагрузка Та

Вращательное движение нагрузки. Эффективный вращающий момент привода ≥ 10Та

$$\label{eq:Ta} \begin{split} \mathsf{Ta} &= \mathsf{I} \times \omega \quad \mathsf{(Hm)}, \\ \mathsf{гдe} \ \mathsf{I} &- \mathsf{момент} \ \mathsf{инерции} \ \mathsf{нагрузки}, \\ \omega &= 2\Theta / \mathsf{t}^2 - \mathsf{угловое} \ \mathsf{ускорениe} \ \mathsf{(рад/c^2)} \end{split}$$

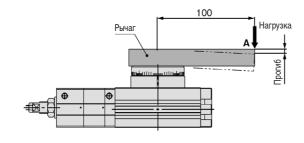
Допустимая нагрузка

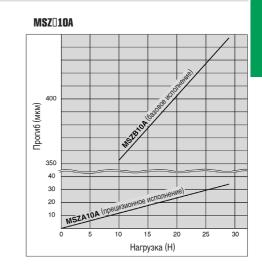

Величины нагрузок и моментов, приложенных к изделию, не должны превышать приведенных в таблице значений. Выход параметров за указанные пределы приводит к возникновению зазоров, снижению точности позиционирования и сокращению срока службы изделия.

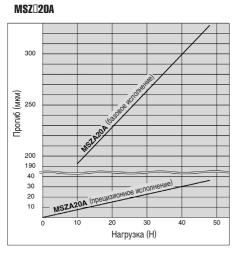
Максимально допустимая нагрузка

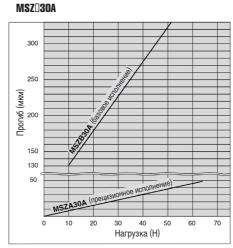
	485			(a) 1				
Тип	Макс. радиалі	ьное усилие (Н)	Макс. осевое	Макс. крутящий момент (Нм)				
			(a)		(b)			
	Базовое исп.	Прецизионное исп.	Базовое исп.	Прецизионное исп.	Базовое исп.	Прецизионное исп.	Базовое исп.	Прецизионное исп.
10	78	86	74	74	78	107	2,4	2,9
20	147	166	137	137	137	197	4,0	4,8
30	196	233	197	197	363	398	5,3	6,4
50	314	378	296	296	451	517	9,7	12,0

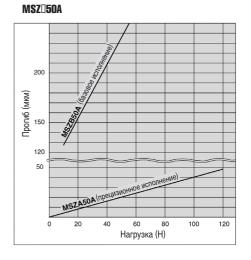
Зависимость кинетической энергии от времени поворота

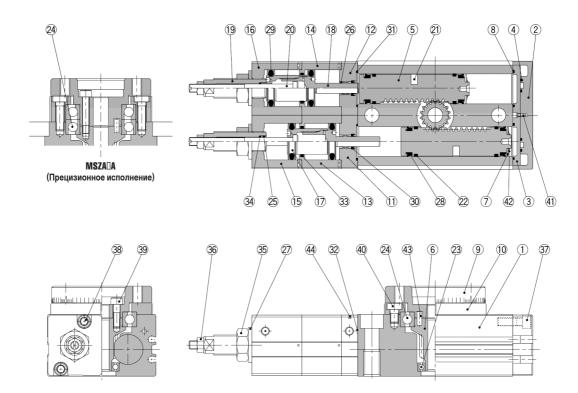

Даже при малых значениях момента вращения внутренние детали нагрузки могут повреждаться вследствие действия инерционных сил. При выборе исполнения поворотного стола следует принимать во внимание момент инерции нагрузки и время поворота.




Расчет моментов инерции в зависимости от формы и характера нагрузки см. стр. 2-145


Прогиб рычага (справочное значение)

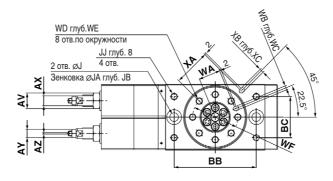

Приведенные ниже графики иллюстрируют зависимость прогиба рычага от приложенной нагрузки. Деформацию определяют в точке приложения силы A, находящейся на расстоянии 100 мм от оси вращения

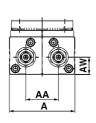


Конструкция

Спецификация

Поз.	Наименование		Материал				
1	Корпус		Алюминиевый сплав				
2	Крышка						
3	Пластина						
4	Уплотнение		NBR				
5	Поршень		Нерж. сталь				
6	Шестерня		Хромомолибден. сталь				
7	Фиксатор уплотнения		Алюминиевый сплав				
8	Прокладка (для крышки)		NBR				
9	Стол		Алюминиевый сплав				
10	Сепаратор подшипника качен	ия					
11	Торцевая крышка (А)						
12	Торцевая крышка (В)						
13	Гильза (А)						
14	Гильза (В)						
15	Крышка цилиндра (А)						
16	Крышка цилиндра (В)						
17	Поршень малый (R)		Углеродистая сталь				
18	Поршень малый (F)						
19	Регулировочный болт (R)						
20	Регулировочный болт (F)						
21	Магнит		Магнитный материал				
22	Износоустойчивое кольцо		Полимер				
23	Шариковый подшипник		Подшипниковая сталь				
24	Шариковый подшипник	Базовое	Подшипниковая сталь				
		исполнение					
	Радиально-упорный	Прецизионное					
	шариковый подшипник	исполнение					
25	Втулка		SPCC				
26	Втулка		SPCC				
27	Уплотнительная шайба		NBR				
28	Уплотнение поршня						
29	Уплотнение поршня						
30	Уплотнение штока						


Поз.	Наименование		Материал			
31	Прокладка		NBR			
32	Уплотнительное кольцо					
33	Уплотнительное кольцо					
34	Уплотнительное кольцо					
35	Гайка		Сталь			
36	Гайка					
37	Болт с внутренним шестигранн	НИКОМ	Нерж. сталь			
38	Болт с внутренним шестигранн	НИКОМ				
39	Болт с внутренним шестигранн	ником				
40	Винт с полукруглой головкой	Типоразмер	Нерж. сталь			
	и крестообразным шлицем	10				
	Винт с полупотайной	Типоразмеры	Хромомолибденовая			
	головкой	20, 30, 50	сталь			
41	Винт с полукруглой головкой		Сталь			
	и крестообразным шлицем №()				
42	Упорное кольцо	·	Пружинная сталь			
43	Штифт		Углеродистая сталь			
44	Стальной шарик	·	Нерж. сталь			



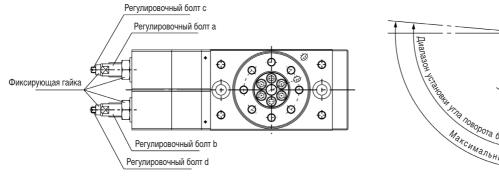
MSZ

Размеры

Базовое исполнение MSZBOA

Прецизионное исполнение MSZA \square A

Тип	DH	DI	DJ	DK	DL	FE	НА	UV
10	45h8	46h8	20H8	5	15H8	10	18.5	52.5
20	60h8	61h8	28H8	9	17H8	15.5	26	63
30	65h8	67h8	32H8	9	22H8	16.5	27	67
50	75h8	77h8	35H8	10	26H8	17.5	30	76

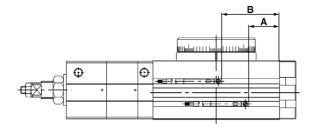

Тип	AA	Α	AV	AW	AX	AY	AZ	BA	BB	ВС	CA	СВ	C	D	DD	DE	DF	DG
10	24.7	50	14	17	8	7	1	9.5	60	27	7	7	38	45h9	46h9	20H9	6	15H9
20	32.4	65	17	18.5	10	8	1.2	12	76	34	8.1	10	50.4	60h9	61h9	28H9	9	17H9
30	34.7	70	17	18.5	10	8	1.2	12	84	37	10.5	10.5	53.5	65h9	67h9	32H9	12	22H9
50	39.7	80	19	21	12	10	1.6	15.5	100	50	12.4	12.5	60.6	75h9	77h9	35H9	13	26H9

Тип	FA	FB	FC	FD	Н	J	JA	JB	JC	JD	JJ	JU	JV	Q	S	SD	SU	UU
10	8	4	3	4.5	13	6.8	11	6.5	M8	12	M5	M4x0.5	M10x1	34	132.5	50	27.3	47
20	10	6	2.5	6.5	17	8.6	14	8.5	M10	15	M6	M5x0.5	M12x1.25	37	168.5	63.5	39	54
30	10	4.5	3	6.5	17	8.6	14	8.5	M10	15	M6	M5x0.5	M12x1.25	40	184	69	36.4	57
50	12	5	3	7.5	20	10.5	18	10.5	M12	18	M8	M6x0.75	M14x1.5	46	214.5	78	42.4	66


Тип	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
10	15	3H9	3.5	M5	8	32	27	3H9	3.5	19	3H9	3.5
20	20.5	4H9	4.5	M6	10	43	36	4H9	4.5	24	4H9	4.5
30	23	4H9	4.5	M6	10	48	39	4H9	4.5	28	4H9	4.5
50	26.5	5H9	5.5	M8	12	55	45	5H9	5.5	33	5H9	5.5

Регулировка углов

- 1. Конечные положения настраиваются при помощи регулировочных болтов (см. рисунки) Регулировочные болты «а» и «b» используются для установки углов поворота, болты «с» и «d» для настройки средней позиции.
- 2. Регулировку следует проводить под давлением. Рекомендуемое давление 0,2 МПа.


Диапазон углов поворота

Датчики положения

Датчики положения (заказываются отдельно)

Для трехпозиционного поворотного стола MSZ используются те же датчики, что и для поворотного стола MSQ

Монтажное положение и зона переключения датчиков положения

Типоразмер	Угол	Герконовый датчик					Электронный датчик					
	поворота	Α	В	Мин. угол	Гистерезис	Α	В	Мин. угол	Гистерезис			
10	190°	27	45	90°	10°	31	49	60°	10°			
20		35	62	80°		39	66	50°				
30		39	68	65°		43	72	50°				
50		49	83	50°		53	87	40°				